지식경제부고시 제2009-187호

집단에너지사업법 제21조의 규정에 의하여 집단에너지시설의 설치 및 운용에 필요한 기술기준을 다음과 같이 제정·고시합니다.

> 2009년 8월 20일 지식경제부 장관

집단에너지시설의 기술기준

제1장 총 칙

제1조 (목적) 이 기준은 집단에너지사업법(이하 "법"이라 한다) 제21조의 규정에 의하여 집단에너지시설(참고도 참조)의 설치 및 운용에 필요한 기술 기준을 규정함을 목적으로 한다.

제2조 (용어의 정의) ①이 기준에서 사용하는 용어의 정의는 다음과 같다.

- 1. "열매체"라 함은 가열하거나 냉각한 물 또는 증기등으로서 열을 전달하는 유체를 말하며, 열매체중에서 "공급 및 회수 되는 열매체"란 열수송 관을 통해 수용가에 공급 및 회수되는 열매체를 말한다.
- 2. "열공급시설"이라 함은 열의 생산·수송 또는 분배를 위한 공급시설로 서 제4호 및 제5호의 시설중 법 제2조 제3호의 사업자(이하 "사업자"라 한다)의 관리에 속하는 시설을 말한다
- 3. "열사용시설"이라 함은 열의 사용을 위한 사용시설로서 법 제2조제4호의 사용자(이하"사용자"라 한다)의 관리에 속하는 시설(열중계처 또는 분기 처를 포함한다)을 말한다.

- 4. "열원시설"이라 함은 열매체를 가열하거나 냉각하는 기기 및 그 부속기 기로서 열발생설비(이동식보일러를 포함한다)·열펌프·냉동설비·열교환기·축열조 기타 열의 생산과 관련이 있는 설비를 말한다.
- 5. "열수송시설"이라 함은 열매체를 수송 또는 분배하는 기기 및 그 부속 기기로서 열수송관(열원시설 및 열사용시설안의 배관을 제외한다)·열 공급펌프(순환펌프·가압펌프등) 기타 열의 수송 또는 분배와 관련이 있는 설비를 말하며, 열수송시설중 수열시설이라 함은 사업자가 열생산자의 열매체를 수열하기 위한 열수송시설을 말한다.
- 6. "열중계처"라 함은 지역냉난방사업의 경우에 열교환설비·기기제어장치 등을 설치하는 장소(기계실·열교환실등을 말한다)로서 공급하는 열매체의 유량 및 온도등을 조정하는 곳을 말한다.
- 7. "분기처"라 함은 산업단지집단에너지사업의 경우에 열수송관에서 분기되어 열계량장치등을 설치하는 장소로서 공급하는 열매체의 열량 또는 온도·압력 및 유량을 측정하는 곳을 말한다.
- 8. "배관"이라 함은 열원시설 및 열사용시설에 부속되어 시설 상호간을 연결하는 관 및 부속기기(열원시설과 동일구내에 설치되는 순환펌프 이전까지의 관과 증기헤더를 포함한다)를 말하며, 열사용시설의 배관은 1차측배관 및 2차측배관으로 구분한다.
- 9. "열부하(열중계처내)"라 함은 지역냉난방 사업의 경우에 열중계처의 난 방 및 급탕열교환기(흡수식냉동기를 포함한다) 부하로서, 열교환 설비의 용량 및 열중계처 연결열부하(또는 계약용량)의 산정기준이 되는 부하를 말하며, 2차측 사용자 부하인 난방부하·급탕부하 및 냉방부하와 1 차측 사업자 공급부하로 구분한다.
- 10. "열중계처(기계실) 연결열부하"라 함은 열중계처에 대한 1차측 사업자 공급부하로서 사용자와의 계약용량을 말한다.

- 11. "이중보온관"이라 함은 제조공장에서 내관과 외관사이에 보온재를 충전하여 생산되는 관으로서 열수송관 또는 배관으로 사용되는 것을 말한다.
 ②제1항에 규정한 것 외에 이 기준에 특별한 규정이 없는 용어의 정의는법(시행령 및 시행규칙을 포함한다)이 정하는 바에 의한다.
- 제3조 (특수한 설계에 의한 시설) ① 특수한 설계에 의한 집단에너지시설은 산업자원부장관의 승인을받은 경우에는 이 기준의 규정에 불구하고 이를 설치·시공할 수 있다.
 - ②제1항의 규정에 의한 승인을 받고자 하는 자는 그 사유 및 설치·시공 방법을 기재한 신청서에 도면을 첨부하여 산업자원부장관에게 제출하여야 한다.
- 제4조 (보칙) ①이 기준에 규정되어 있지 아니한 사항은 KSCP-B-1018(열공 급시설의 기술기준)을 참고하여 정한다.
 - ②열공급시설중 에너지이용합리화법·고압가스안전관리법 및 전기사업법에 의한 안전에 관한 검사(확인·점검을 포함한다)를 받는 것은 이 고시의적용을 받지 아니한다.
 - ③열사용시설을 점검 또는 관리하는 데 필요한 경우 이 기준을 토대로 하여 구체적인 내용을 추가하여 보완·적용할 수 있다.

제2장 열공급시설

제1절 열원시설

제5조 (일반측정장치) 열원시설에는 다음 각호의 사항을 측정하는 장치가 있어야 한다.

- 1. 열원설비별 에너지(연료, 수열)사용량
- 2. 열원시설에서 공급되는 열매체의 열량 또는 온도 · 압력 · 유량
- 3. 열원시설로 회수되는 열매체의 열량 또는 온도 · 압력 · 유량
- 제6조 (안전을 위한 장치) 열원시설에는 다음 각호의 안전장치가 있어야 한다.
 - 1. 가압장치(예: 보일러드럼, 탈기기등)가 있는 경우에는 해당 가압장치에 서 가압되는 열매체의 압력 또는 액면을 측정하는 장치 및 제어하는 장치
 - 2. 감압장치(예: 터빈입구증기, 터빈추기증기, 기타 고압증기의 감압장치등)가 있는 경우에는 해당 감압장치에서 감압된 열매체의 압력을 측정하는 장치 및 제어하는 장치
 - 3. 감온장치(예: 터빈입구증기, 터빈추기증기, 기타 고온증기의 감온장치등)가 있는 경우에는 해당 감온장치에서 감온된 열매체의 온도를 측정하는 장치 및 제어하는 장치
 - 4. 증기헤더가 있는 경우에는 증기헤더에서 나가는 열매체의 압력을 측정하는 장치 및 압력이 최고사용압력이상으로 상승되는 경우 압력을 방출하는 장치
- 제7조 (부하조절장치) 열원시설에는 기온변화 및 수용가의 열부하에 따라 공급하는 열매체의 유량, 압력 또는 온도를 조절할 수 있는 장치가 있어야 한다.
- 제8조 (열교환기 제어장치) 지역냉난방용 열교환기에는 다음 각호의 제어장 치가 있어야 한다.
 - 1. 열교환기의 출구에서 공급열매체의 온도를 조절하는 자동온도제어장치
 - 2. 온도제어장치의 고장등에 의하여 공급열매체의 온도가 상승하는 경우 열의 공급원을 차단하는 장치

- 3. 공급열매체의 압력 상승을 제어하는 장치
- 제9조 (경보장치) 열원시설에는 다음 각호의 경우에 부자·벨등의 신호를 발하면서 표시등이 점멸하는 경보장치가 있어야 하며, 경보의 수신처는 중앙 제어실등 운전자가 상주하는 곳이어야 한다.
 - 1. 보일러·열교환기·냉동기 기타 관련기기의 출구에서 공급열매체의 온 도 및 압력이 이상 상승 또는 강하하는 경우
 - 2. 제어용 기기의 공기 또는 기름의 압력이 이상 강하하거나 제어용 전력 에 이상이 생기는 경우
- 제10조 (긴급정지장치) 열원시설에는 다음 각호의 경우에 동 시설을 긴급정지시키는 장치가 있어야 하며, 제1호의 경우외에는 자동 및 수동조작을 동시에 할 수 있는 것이어야 한다.
 - 1. 지진 · 태풍 · 화재 · 폭풍등으로 안전한 열공급을 계속하기 어려운 경우
 - 2. 열공급시설에 중대한 고장이 생겨 안전한 열공급이 불가능할 경우
 - 3. 정전된 경우
 - 4. 제어용 공기 및 기름등의 압력이 상실되거나 제어용 전기회로의 전압이 상실된 경우
- 제11조 (배관) 배관에 대하여는 열수송관에 관한 규정을 준용한다.
- 제12조 (보호시설) 열원시설의 구내에 취급자외의 일반인이 함부로 들어갈 우려가 있는 경우에는 울타리등을 설치하여 위험방지를 위한 적절한 조치를 하여야 한다.

제2절 열수송시설

제1관 열수송관 및 열공급펌프(순환펌프ㆍ가압펌프등)의 재료

- 제13조 (금속제 재료) 열수송관에 사용되는 금속제 재료는 다음 각호의 규격에 적합한 것 또는 이와 동등이상의 기계적 성질, 내식성 및 내열성을 가지고 해당재료를 사용하는 조건에 적합한 것이어야 한다.
 - 1. KS D 3503(일반 구조용 압연강재). 다만, 증기를 통하는 열수송관으로 서 최고사용압력이 10kgf/cm^2 를 넘는 것에 사용되는 경우에는 1종 및 2 종에 관계되는 부분을 제외한다.
 - 2. KS D 3560(보일러 및 압력용기용 탄소강 및 몰리브덴강 강판)
 - 3. KS D 3515(용접 구조용 압연강재). 다만, 증기를 통하는 열수송관에 사용되는 경우에는 최고사용압력이 16kgf/cm²이하인 것에 사용될 때에 한한다.
 - 4. KS D 3521(압력 용기용 강판)
 - 5. KS D 3501(열간 압연 강판 및 강대)
 - 6. KS D 3555(강관용 열간 압연 탄소 강대)
 - 7. KS D 3710(탄소강 단강품)
 - 8. KS D 3575(고온 가스용 이음매없는 강관)
 - 9. KS D 3507(배관용 탄소강관). 다만, 증기를 통하는 열수송관에 사용되는 경우에는 최고사용압력이 10kgf/cm^2 이하인 것에 사용될 때에 한한다.
- 10. KS D 3562(압력 배관용 탄소 강관)
- 11. KS D 3564(고압 배관용 탄소 강관)
- 12. KS D 3570(고온 배관용 탄소 강관)
- 13. KS D 3583(배관용 아아크 용접 탄소강 강관)
- 14. KS D 3573(배관용 합금강 강관)
- 15. KS D 3576(배관용 스테인레스 강관)

- 16. KS D 3563(보일러 및 열교환기용 탄소 강관)
- 17. KS D 3572(보일러 및 열교환기용 합금 강 강관)
- 18. KS D 3577(보일러 및 열교환기용 스테인레스 강관)
- 19. KS D 3752(기계구조용 탄소 강재). 다만, SM10C부터 SM30C까지에 관계되는 부분에 한하며, 또한 적당한 온도에서 노오말라이징한 것이어야한다.
- 20. KS D 3708(니켈 크롬강 강재)
- 21. KS D 3709(니켈 크롬 몰리브덴 강재)
- 22. KS D 3707(크롬 강재)
- 23. KS D 3711(크롬 몰리브덴강 강재)
- 24. KS D 3756(알루미늄 크롬 몰리브덴 강재)
- 25. KS D 3705(열간 압연 스테인레스 강판 및 강대)
- 26. KS D 3698(냉간 압연 스테인레스 강판 및 강대)
- 27. KS D 3732(내열 강관)
- 28. KS D 4101(탄소강 주강품)
- 29. KS D 4102(구조용 고장력 탄소강 및 저합금강 주강품)
- 30. KS D 4103(스테인레스강 주강품)
- 31. KS D 4105(내열강 주강품)
- 32. KS D 4104(고망간강 주강품)
- 33. KS D 4107(고온 고압용 주강품)
- 34. KS D 4301(회 주철품). 다만, 최고사용압력이 16kgf/cm²이하인 것에 사용되는 경우에 한한다.
- 35. KS D 4302(구상 흑연 주철품). 다만, 최고사용압력이 24kgf/cm²이하인 것에 사용되는 경우에 한한다.
- 36. KS D 4303(흑심 가단 주철품). 다만, 최고사용압력이 24kgf/cm²이하인 것에 사용되는 경우에 한한다.

- 37. KS D 4305(백심 가단 주철품). 다만, 최고사용압력이 16kgf/cm²이하인 것에 사용되는 경우에 한한다.
- 38. KS D 4304(펄라이트 가단 주철품)
- 39. KS D 5562(무산소 동조). 다만, 최고사용압력이 16kgf/cm²이하인 것에 사용되는 경우에 한한다.
- 제14조 (시멘트제 재료) 열수송관에 사용되는 시멘트제 재료는 다음 각호의 재료 또는 이와 동등이상의 기계적 성질, 내식성 및 내열성을 가지고 해당 재료를 사용하는 조건에 적합한 것이어야 한다.
 - 1. KS F 4401(무근 콘크리트관 및 철근 콘크리트관)
 - 2. KS F 4403(원심력 철근 콘크리트관)
 - 3. KS F 4010(철근 콘크리트 플룸 및 벤치플룸)
 - 4. KS F 4405(코어식 프리스트레스트 콘크리트관)
- 제15조 (합성수지 재료) 열수송관에 사용되는 합성수지 재료는 다음 각호의 재료 또는 이와 동등이상의 기계적 성질, 내식성 및 내열성을 가지고 해당 재료를 사용하는 조건에 적합한 것이어야 한다.
 - 1. KS M 3501(경질 염화 비닐판)
 - 2. KS M 3401(수도용 경질 염화 비닐관)
 - 3. KS M 3407(일반용 폴리에틸렌관)
 - 4. KS M 3408(수도용 폴리에틸렌관)
- 제16조 (열공급펌프의 재료) 지역냉난방사업용 열공급펌프(순환펌프·가압펌 프등)의 주요 재료는 다음 각호의 재료 또는 이와 동등이상의 기계적 성질, 내식성 및 내열성을 가지고 해당재료를 사용하는 조건에 적합한 것이어야 한다.

- 1. KS D 4101(탄소강 주강품)
- 2. KS D 4103(스테인레스강 주강품)
- 3. KS D 4301(회 주철품). 다만, 최고사용압력이 16kgf/cm²이하인 것에 사용되는 경우에 한한다.
- 4. KS D 4302(구상 흑연 주철품). 다만, 최고사용압력이 24kgf/cm²이하인 케이성에 사용되는 경우에 한한다.
- 5. KS D 6002(청동주물). 다만, 최고사용압력이 140℃이하인 것에 사용되는 경우에 한한다.

제2관 열수송관의 두께 및 지름

제17조 (매설 열수송관의 두께) 매설하는 원형 단면의 열수송관의 두께는 다음의 두께 계산식에 의하여 산정한 값이어야 한다.

$$t = \frac{FP + \sqrt{(FP)^2 + 2400F(KfWf + KtWt) \cdot S}}{400S} \cdot Do$$

t는 열수송관의 두께(mm를 단위로 한다)이며, 부식여유를 1mm이상 감안한다.

F는 열수송관의 재질에 따른 안전계수이며, 금속재인 경우 2.5, 비금속재인 경우 4.0

P는 열수송관의 최고사용압력(kgf/cm²를 단위로 한다)

 K_{f} Kt는 계수이며, 재료에 따라 <표 1>의 값을 적용한다.

S는 열수송관의 최고사용온도에서의 재료의 인장강도(kgf/mm² 단위로 한다)

Do는 열수송관의 바깥지름(mm를 단위로 한다)

<표 1> 재료에 따른 Kf, Kt의 값

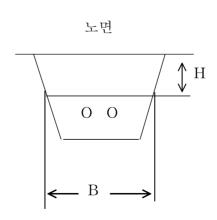
⊸ 1]	묘		계 수		
시 시			Kf	Kt	
췸	재	료	0.223	0.011	
휘지 여	아니하는	재료	0.378	0.011	

W 순 매설흙에 의한 연직토압으로 다음 식에 의하여 산출한 값(kgf/cm²를 단위로 한다)

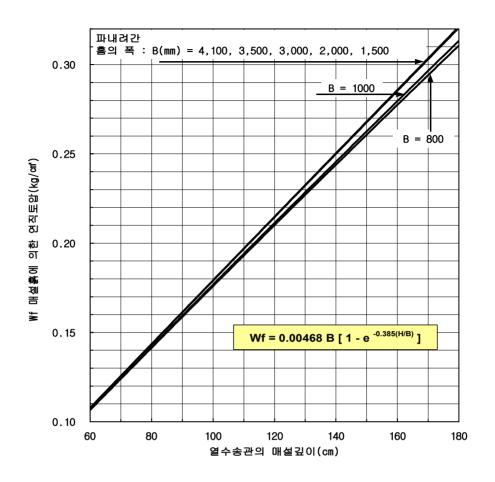
- Marston(마스톤)의 공식

$$Wf = y \cdot B\{(1 - e^{-2Ktan\alpha(H/B)})/(2Ktan\alpha)\}$$

= 0.00468 \cdot (1 - e^{-0.385 \cdot (H/B)}) \cdot B


y는 토양의 비중량 0.0018kg/cm³

K는 수직토압의 랭킨계수 : (1-sina)/(1+sina)


α는 관저지지각 30⁰

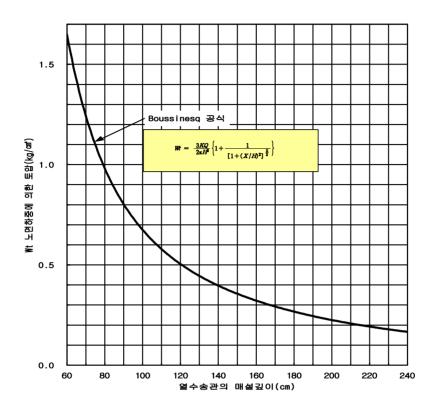
H는 열수송관의 매설깊이(cm를 단위로 한다)

B는 파내려간 홈의 폭(cm를 단위로 한다)

<그림 1> 매설흙에 의한 연직토압

Wt는 노면 하중에 의한 토압으로 아래공식에 의한 산출값 또는 <그림2>에서 구한 값(kgf/cm²를 단위로 한다)

- Boussinesq(부즈네스크) 공식 Wt=(3KQ/2πH²)[1+{1/(1+(X/H)²)^{5/2}}]


K는 충격계수 (1.5)

Q는 뒷바퀴하중(8,000kgf)

X는 차량간격(100cm)

H는 매설깊이(cm)

<그림 2> 열수송관의 매설깊이에 따른 토압

제18조 (매설하지 아니하는 열수송관등의 두께) 매설하지 아니하는 원형단면 의 열수송관 및 매설하는 열수송관으로서 외압을 받을 우려가 없는 것의 두께는 다음의 두께 계산식에 의하여 산출한 값이상이어야 한다.

1. t/Di ≤ 0.25의 경우

$$t = \frac{PDi}{200 \,\sigma_{\alpha} \eta - 1.2P}$$

2. t/Di > 0.25의 경우

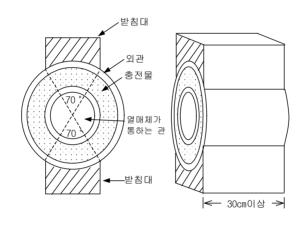
$$t = \frac{Di}{2} \left(\frac{\sqrt{100 \,\sigma_{\alpha} \eta + P}}{100 \,\sigma_{\alpha} \eta - P} - 1 \right)$$

t, P는 각각 제17조에 정하는 바에 의한다.

Ou는 열수송관의 최고사용온도에서의 허용인장응력(kgf/cm²를 단위로 한다) Di는 열수송관의 안지름 (mm를 단위로 한다)

η는 용접이음효율로서 <표 2>의 값을 적용한다.

<표 2> 용접이음효율


분류		이름의 효율 (%)			
번호	용접이름의 종류	온길이 방사선	부분 방사선	방사선 투과시험을	
		투과시험을 하는것	투과시험을 하는것	하지 아니하는 것	
(1)	받침쇠를 사용한 한쪽 맞대기 용접이 음으로 받침쇠를 남기는 경우	100	95	70	
(2)	앙쪽 맞대기용접이음 또는 이와 동등 이상이라 할 수 있는 한쪽 맞대기용 접이음	90	85	65	
(3)	(1), (2)의 경우외의 한쪽 맞대기 용접 이음	80	75	60	
(4)	앙쪽 온두께 필렛 겹치기 용접이음	_	_	55	
(5)	플러그용접을 하지 아니하는 한쪽 온 두께 필렛 겹치기 용접이음	-	-	50	
(6)	플러그용접을 하지 아니하는 한족 온 두께 필렛 겹치기 용접이음	_	_	45	

- 주) 위의 표에 열거한 부분방사선투과시험을 하는 용접이음의 효율은 용접개소의 20%이상의 온길이에 대하여 방사선투과시험을 하는 경우에 한하여 적용할 수 있다.
- 제19조 (파형열수송관 및 이중보온관의 내관등의 두께) 파형열수송관, 이중 보온관의 내관 기타 구조가 복잡한 열수송관의 두께는 다음 각호의 시험 방법에 의하여 산출한 값 이상이거나 객관적인 문헌 및 기타 시험분석자 료, 또는 확립된 계산식(또는 기준)에 의해 산출한 값 이상이어야 한다. 다만, 상기에 의하지 아니하고 제17조 또는 제18조의 규정을 각각 준용하 여 산출한 값 이상으로 할 수 있다.
 - 1. 매설하는 열수송관에 있어서는 열수송관의 내면에 최고사용압력의 내압을 가할 때 발생하는 응력과 <그림 2>에 표시하는 방법에 의하여 외압

을 가할 때 발생하는 응력과의 각각의 위치에서의 합이 당해 재료의 최고사용온도에서의 인장강도의 1/2.5이하일 것

- 2. 매설하지 아니하는 열수송관 및 매설하는 열수송관으로서 외압을 받을 우려가 없는 것에 있어서는 열수송관의 내면에 최고사용압력의 내압을 가할 때 발생하는 응력이 당해 재료의 최고 사용온도에서의 인장강도의 1/2.5이하일 것
- 3. 매설하는 열수송관으로서 그 외관이 토압 및 노면하중등의 외압을 받을 우려가 있는 것에 있어서는 그 외압이 허용하중이하일 것

(그림 3) 열수송관에 외압을 가하는 방법

주1) 위의 시험을 하는 경우 가하는 하중W(외압으로서 kgf/cm²를 단위로 한다)는 열수송관의 재료가 휨재료일 때에는 제17조에 정하는 Wf와 0.05Wt와의 합으로 하고, 열수송관의 재료가 휘지 아니하는 재료일 때에는 제17조에 정하는 Wf와 0.03Wt와의 합의 1.7배로 한다.

주2) 하중 W에 대한 보충설명

파형열수송관, 이중보온관 기타 구조가 복잡한 열수송관에 있어서는 예상되는 하중을 가하여 발생하는 응력이 그 열수송관의 허용응력이하인지의 여부를 시험하여 두께의 적정여부를 확인하는 바, 시험시 가하는 하중 W를 결정하는 방식은 다음과 같다.

(1) 제17조에 정하는 Wf와 Wt의 합에 상당하는 하중 W를 가하여야 하는데, <그림 3>과 같이 시험방법을 정하는 경우에는 관의 밑면 에 다음 식에 따라 산출되는 최대굽힘모멘트의 발생이 예상된다.

$$M = \left\{ \frac{1}{\pi} \left(\Theta \sin^2 \Theta + \frac{3}{2} \sin \Theta \cdot \cos \Theta \right) - \frac{1}{2} \sin^2 \Theta \right\}$$

Wf와 Wt의 합에 의하여 발생되는 관의 최대굽힘모멘트는 다음 식에 따라 산출된다.

$$M = KfWfR^2 + KtWtR^2 \dots <24>$$

(2) 휨관의 경우에는 Kf=0.223, Kt=0.011이므로 <2식>은 다음과 같이 정리된다.

그러므로, 위의 <1식>과 <3식>의 값이 일치하기 위해서는 Θ 를 변화시키거나 W를 변화시키는 방법이 있는데, 여기서는 Wf의 계수에 일치하는 Θ 를 정하여 W=Wf+0.05Wt로 결정한다. 그리고 Θ 는 $2\Theta=70^\circ=\frac{70}{180}\pi$ 로 하면 된다.

(3) 휘지 아니하는 관의 경우에는 Kf=0.378, Kt=0.011이므로 <2식>은 다음과 같이 정리된다.

주3) 시험방법에 대한 설명

(1) $\sigma_1 = \frac{PDi}{2t}$ 에 대응하는 응력으로서 열수송관의 최고사용압력의 내 압을 가하고, 이 때 발생하는 응력 σ_1 을 스트레인게이지등으로 측 정한다. 다음에

- $\sigma_2 = \frac{(\mathit{KfWf} + \mathit{KtWt})R^2}{Z}$ 에 대응하는 응력으로서 <그림 3>과 같은 방법으로 외압(하중 W)을 가하고, 이 때 발생하는 응력 σ_2 를 스트레 인게이지 등으로 측정한다.
- σ_1 과 σ_2 의 합에 안전율(F=2.5)을 곱한 값이 열수송관의 최고사용 온도에서의 강도보다 적어야 한다.
- (2) 스트레인게이지에 의한 응력 측정점은 <그림 3>과 같이 열수송관의 상하 좌우의 내면 및 외면에 설치하여야 하는데, 하중 W는 열수송관의 밑면에 발생하는 응력을 근거로 하여 정해지는 것이므로하부의 내면 및 외면에는 반드시 설치하여야 한다.
- 제20조 (계산식의 하중조건) 제17조 내지 제19조에 정하는 계산식의 하중조건은 다음 각호와 같다.
 - 1. 계산식의 하중조건으로서는 내압, 토압 및 자동차 하중(노면하중에 대한 토압)에 한정한다.
 - 2. 수중이나 수저에 시설하는 경우에는 매설·열수송관에 준하여 관의 두 께를 결정한다. 이 경우 시설된 곳의 수압이 외압에 해당한다.
 - 3. 열수송관을 매설하는 곳의 하중조건이 열악한 경우라도 그에 상응하게 대처하여야 한다. 특히 철도 횡단등의 경우에는 노면하중으로서 열차 하중 및 진동을 감안하여야 한다.
- 제21조(열수송관의지름) 열수송관의 지름은 확립된 계산식(또는 기준)에 의해 열손실 및 압력손실등을 고려하여 정하여야 하며, 지역냉난방사업의 경우에는 열공급펌프(순환펌프·가압펌프등)의 용량, 설치비, 동력비등도 고려하여 경제적인 크기이어야 한다.

제3관 열수송관의 용접이음

제22조 (용접일반) 열수송관의 용접은 다음 각호에 의하여야 한다.

- 1. 공급 및 회수열매체를 통하는 열수송관의 용접된 부분은 설계상 요구되는 강도이상이어야 한다. 다만, 안지름이 75mm이상인 열수송관으로서 최고사용온도가 100℃이상이고 최고사용압력이 10kgf/cm²(길이이음이 있을 때에는 5kgf/cm²으로 한다)이상이거나 최고사용온도가 100℃이상이고 최고사용압력이 20kgf/cm²이상인 조건에서 사용되는 것의 용접된 부분은 해당 모재의 강도이상이어야 한다.
- 2. 공급 및 회수열매체를 통하는 열수송관의 용접된 부분은 용압이 충분하여야 하고, 터짐·언더컷·오우버랩·크레이터·슬래그섞임·기공등으로 인한 유해한 결함이 없어야 한다.
- 3. 맞대기 용접이음면의 어긋남, 용접재료 및 시공 기타 용접에 관한 사항 은 제23조에 정하는 바에 의한다.
- 제23조 (용접기준) 열수송관의 용접에 관하여는 에너지이용합리화법에 의한 보일러 및 압력용기 제조검사 기준과 설치검사기준중 용접에 관한 사항을 준용한다.

제4관 열수송관의 이음

제24조 (이음방법) 열수송관의 용접외의 이음방법은 다음 각호와 같다.

- 1. 플랜지이음에 있어서는 제25조에 정하는 바에 의한다.
- 2. 나사이음에 있어서는 나사가 KS B 0222(관용테이퍼 나사)에 적합하여야 한다.
- 3. 기타 이음에 있어서는 최고사용압력에 대한 안전율이 2.5이상이어야 한다.

- 제25조 (플랜지이음) 열수송관에 부착하는 플랜지는 다음 각호의 규격에 적합한 것이어야 한다. 다만, 안전상 필요한 강도를 가진 것이 분명한 것은 그러하지 아니하다.
 - 1. KS B 1511(철 강제 관 플랜지의 기본치수)
 - 2. KS B 1503(강제관 용접식 관 플랜지)
 - 3. KS B 1506(스테인레스강제 용접식 플랜지)

제5관 열수송관의 보온

- 제26조 (보온일반) 집단에너지사업을 합리적으로 운영하고 열손실을 줄이기 위하여 열수송관에는 적절한 보온조치를 하여야 한다.
- 제27조 (보온재) ①보온재는 에너지이용합리화법에 의한 단열재로서 해당 재료의 안전사용온도 및 기타 사용조건에 적합한 것이어야 한다.
 - ② 제1항의 보온재는 한국공업규격 표시허가를 받은 것이어야 한다. 다만, 해당 제품에 대한 한국공업규격 표시허가 업체가 없는 경우와 이중 보온관의 경우에는 예외로 할 수 있다.
- 제28조 (열수송관의 보온두께) 열수송관의 보온두께는 KS F 2803(보온 보냉 공사 시공표준)이 정하는 바에 의한다.

제6관 열수송관의 필요조치 및 장치

제29조 (신축흡수장치) 온도 변화에 따른 신축으로 열수송관에 과대한 응력

- 이 생길우려가 있는 경우에는 신축흡수공법을 적용하거나, 벨로우즈형 신축이음·슬리이브형 신축이음·보울조인트·U자관·곡관·휨관등을 이용하여 신축을 흡수하는 조치를 하여야 한다. 이 경우 신축흡수공법 및 신축흡수장치는 확립된 계산식(또는 기준)등에 의하여 설계하여 적용되어야 하며, 특히 지하에 매설하는 신축흡수장치는 유지·보수 측면을 고려하여시공되어야 한다.
- 제30조 (방식조치) 열수송관이 부식할 우려가 있는 경우에는 적절한 부식방 지조치를 하여야 한다.
- 제31조 (공기 및 물빼기) 열수송관중 공기 또는 물이 고이기 쉬운 곳에는 공기 또는 물을 배출시키기 위한 장치를 설치하여야 한다.
- 제32조 (차단장치) 열수송관중 열사용시설에 인접한 장소 기타 열수송관의 유지관리상 필요한 곳에는 차단밸브 기타 차단장치를 설치하여야 한다.
- 제33조 (압력안전장치) ① 공급열매체의 압력이 해당 열수송관의 최고사용압력을 넘을 우려가 있는 경우에는 열수송관에 압력안전장치(증기를 통하는 열수송관으로서 최고 사용 압력이 10kgf/cm²이상이거나 증기외의 열매체를 통하는 열수송관으로서 온도가 120℃를 초과하는 것에는 안전밸브, 기타 열수송관에는 적절한 압력방출방치)를 설치하여야 한다. 다만 산업단지집단에너지사업의 경우 열원시설안의 증기공급혜더에 설치되어 있는 압력안전장치는 이를 열수송관의 압력안전 장치로 본다.
 - ② 열수송관에 설치하는 안전밸브의 종류·구조·용량·크기 및 부착방법 은 다음 각호와 같다.
 - 1. 안전밸브의 종류는 스프링안전밸브로 하되, 소요분출량의 1/2이상을 스

- 프링안전밸브로 분출하는 구조의 경우에는 스프링 파이롯벨브부착 안전 밸브를 사용할 수 있다.
- 2. 스프링안전밸브의 구조는 KS B 6216(증기용 및 가스용 스프링안전밸 브)이 정하는 바에 의하여야 하며, 어떠한 경우에도 밸브시트나 몸체에서 누설이 없어야 한다.
- 3. 안전밸브·압력 릴리이프장치 및 바이패스장치의 용량은 해당부분의 압력을 일정하게 유지할 수 있는 값이상이어야 한다.
- 4. 안전밸브등의 크기는 호칭지름 25A이상으로 하여야 한다.
- 5. 안전밸브등은 손쉽게 검사할 수 있는 부분에 밸브축을 수직으로 부착하여야 한다.

제7관 열수송시설의 설치 및 보호

- 제34조 (열수송관의 설치일반) 열수송관을 설치할 때에는 휨·신축·진동등의 영향을 고려하여 이에 견디는 구조이어야 하며, 다음 각호의 사항에 적합하여야 한다.
 - 1. 연약한 지반에 설치하는 열수송관은 불균형 침하에 의하여 손상 될 우려가 없도록 설치하여야 한다.
 - 2. 외부로부터 심한 기계적 충격을 받을 우려가 있는 열수송관에는 해당부분에 적절한 보호장치를 하여야 한다.
 - 3. 고열의 열매체를 통하는 열수송관으로서 열에 의하여 주위에 심한 장애 를 줄 우려가 있는 것에는 적절한 보호조치를 하여야 한다.
- 제35조 (지하매설) 열수송관을 지하에 매설하는 경우에는 열수송관이 안정적으로 유지될 수 있도록 하여야 하며, 다음 각호의 사항에 적합하여야 한다.
 - 1. 지하에 매설하는 경우 열수송관의 정상부와 지면정상부와의 거리는

- 0.6m이상으로 하되 매설지반의 동결, 토압, 지상적재하중 및 콘크리이 트패드,케이싱등의 보호조치를 고려한 확립된 계산식(또는 기준)에 의해 열수송관이 안정적으로 유지될 수 있는 깊이이어야 한다.
- 2. 지하에 매설하는 열수송관으로서 다른 지하 매설물과 교차하는 것은 15cm 이상, 평행한 것은 30cm이상의 간격을 두어야 한다. 다만, 적절한 보호장치를 하는 경우에는 그러하지 아니하다
- 3. 성토 또는 절토의 경사면 근방에 열수송관을 매설하는 경우에는 경사면 에 대해서 충분히 안전한 위치를 확보하여야 한다.
- 4. 선로에 매설하는 경우에는 열차 하중 및 진동등에 의한 영향을 받을 우려가 거의 없을 정도의 수평거리를 유지하여야 하며, 열수송관이 안정적으로 유지될 수 있도록 시공·조치하여야 한다.
- 5. 하천이나 수로를 따라 제방 안쪽에 매설하는 경우에는 홍수시 제방유실 등에 의해 열수송관의 안전이 우려되는 취약구간등은 안전조치를 하여야 하며, 하천 횡단등의 경우에는 열수송관이 안정적으로 유지될 수 있도록 시공·조치하여야 한다.
- 6. 열수송관의 위로 꺾이는 부분, 지반이 급변하는 부분, 불균형 침하 구조 물과의 접속부분 등과 같이 지지조건이 불연속적인 곳에서는 곡관의 삽 입. 지반계량등 필요한 조치를 하여야 한다.
- 제36조 (지상부설) 열수송관을 지상에 부설하는 경우에는 지반면에 접하지 아니하도록 하여야 한다.
- 제37조 (열수송관의 지지물) 열수송관을지지 하는 공작물은 확립된 계산식 (또는 기준)에 의해 열수송관의 중량·자중·풍압·지진력등에 견디도록 설계되어야 하며, 특히 열수송관의 지지대(Support)나 앵커(Anchor)는 어느 부분이 닫힐 때 갑자기 발생할 수 있는 역류에 의한 모든 충격과 정상

압력에 열수송관 전계통이 만족스럽게 지탱될 수 있어야 한다.

제38조 (안전율) 열수송관의 지지물 및 그 기초는 확립된 계산식(또는 기준) 에 의해 당해 지지물 및 기초에 작용하는 최고하중의 2배이상을 견딜 수 있도록 설계되어야 한다.

제39조 (열공급펌프의 안전장치 및 보호시설)

- ①열공급펌프(순환펌프·가압펌프등)에서 나가는 열매체의 압력을 측정하는 장치 및 압력이 최고사용압력이상으로 상승되는 경우 압력을 방출하는 장치 가 있어야 한다
- ②열공급펌프(순환펌프·가압펌프등)가 이상작동하는 경우에는 부자, 벨등의 신호를 발하면서 표시등이 점멸하는 경보장치가 있어야 하며, 경보의수신처는 중앙제어실 또는 가압장내등 운전자가 상주하는 곳이어야 한다.
- ③열공급펌프(순환펌프·가압펌프등)는 제10조에 의한 긴급정지시 이에 응할 수 있어야 한다.
- ④열공급펌프(순환펌프·가압펌프등)는 ①②등의 비상시에 안전을 위한 장치가 있어야 한다.
- ⑤가압펌프가 설치되는 구내에 일반인이 함부로 들어갈 우려가 있는 경우에는 울타리설치등 위험방지를 위한 적절한 조치를 하여야 한다.

제3장 열사용시설

제1절 지역냉난방 열사용시설

제40조 (적용대상 및 범위) 이 기준의 적용을 받는 지역냉난방 열사용시설 및 그 범위는 다음 각호와 같다.

1. 1차측배관

열수송관의 일부로서 집단에너지사업자(이하"사업자"라 한다)와 사용자의 재산한계점 이후부터 열중계처내의 열교환설비까지의 배관 및 그 부속기기

2. 열교환설비

열중계처에서 1차측배관과 직접 접속되는 난방·급탕열교환기, 흡수식냉동기, 기타 기기

3. 열계량장치

중계처에서 사용자측의 열매체 사용량을 측정하기 위하여 열량계 및 원 격검침제어기등 사업자가 설치하는 장치

4. 기기제어장치

난방·급탕열교환기, 흡수식냉동기등을 제어하는 기기(1차측 배관에 설치하는 온도조절밸브와 2차측 배관에 설치하는 온도감지기등을 포함한다)

5. 2차측 배관

열중계처내의 열교환설비 이후부터 최종 사용처까지의 배관 및 그 부속 기기 (냉난방배관 및 급탕배관등으로 구분한다)

6. 순환펌프

열교환설비의 2차측 열매체의 순환을 위한 펌프

7. 팽창탱크

2차측 배관 계통내 배관수의 팽창흡수 및 보충을 위한 탱크

- 8. 기타 열교환설비에 부속되는 기기 및 제어장치
- 9. 1호내지 8호등의 설비들이 일체형으로 콤팩트화되어 공장에서 제작되어 출하되는 설비

제41조 (열중계처 설치기준) 사용자가 설치하는 열중계처의 설치기준은 다음 각호와 같다.

- 1. 공동주택(관리동·노인정을 포함한다)의 경우 열중계처의 최소연결열부하는 1Gcal/h 이상으로 하되, 부득이한 경우에는 그러하지 아니하다.
- 2. 공동주택외의 건물(공동주택내 판매시설등을 포함한다)의 경우 열중계처의 최소연결열부하는 10Mcal/h이상으로 하되, 1건물 1열중계처의 설치를 원칙으로 한다.
- 3. 열중계처의 위치는 지하(지하구조물이 없는 경우에는 지상 1층)이어야 하며, 별도로 구획된 공간이어야 하고 유지·보수를 위한 공간이 확보되어야 한다.
- 제42조 (열부하 산정기준) ①열사용시설의 난방·급탕부하(냉방부하를 포함 한다) 또는 증기부하는 사업자가 따로 정하는 열부하산정기준을 적용하여 산정하여야 한다.
 - ②열교환설비 용량의 산정은 제1항의 규정에 의한 부하값으로 하되, 여유 치등 안전율을 감안하여서는 아니된다. 다만, 기기선정상의 부득이한 증 가분을 더한 값으로 할 수 있다.
- 제43조 (열교환설비) ①열교환설비는 사업자가 따로 정하는 공급조건(온도·압력등)에 따른 1·2차측 설계기준에 적합하게 설계 제작되어야 한다. ②급탕열교환기의 급탕방식은 순간가열급탕방식으로 한다. 다만, 급탕부하가 난방부하보다 상대적으로 큰 열사용시설의 경우에는 사업자와 협의하여 저탕조방식으로 할 수 있다.
- 제44조(열계량장치의 설치) 사용자는 사업자가 따로 정하는 열계량장치(유량부, 적산부, 온도감지기 및 원격검침제어기등)의 규격 및 설치기준에 따라설치장소를 제공하여야 하고, 열계량장치의 전원공급시설 및 스트레나를설치하여야 한다.

- 제45조 (배관등) ①배관재(밸브류를 포함한다)의 규격은 1·2차측 열매체의 공급조건을 만족하는 재질 및 두께로 하여야 하며, 1차측 배관재의 규격은 사업자가 따로 정한다.
 - ②배관 보온은 다음 각호와 같이 하여야 한다.
 - 1. 배관보온재는 1·2차측 열매체 조건에 적합하여야 하며, 1차측 배관은 방습 및 보온재 보호를 위하여 사업자가 따로 정하는 보온마감재를 사용하여야 한다.
 - 2. 1차측의 배관 및 기기의 보온두께는 KSF 2803(보온보냉공사의 시공표준)기준을 원칙으로 한다. 다만, 이중보온관 및 시공공간의 협소등 부득이한 경우에 단열성능이 인정되는 경우에는 그러하지 아니하다.
 - ③1차측배관은 용접부위에 대하여 방사선 투과시험을 하여야 하며, 기타 방사선 투과시험에 관한 사항은 산업자원부장관이 고시하는 열공급시설의 검사기준을 준용한다.
 - ④열사용시설의 사용전에 1·2차측 배관 및 열교환설비는 청소를 하여야 한다.
 - ⑤배관 및 열교환설비는 1·2차측 열매체별로 수압시험을 하여야 하며, 기타 수압시험에 관한 사항은 산업자원부장관이 고시하는 열공급시설의 검사기준을 준용한다.
 - ⑥1·2차측 배관 또는 열교환설비의 적당한 곳에 공기 및 물빼기용 밸브 를 설치하여야 한다.
 - ⑦열교환설비의 1·2차측 배관 전후에 온도계 및 압력계를 열매체 조건에 적합하도록 설치하여야 하며, 이 경우 온도계는 보호용설치구(Thermo-well) 안에 설치되어야 한다.

제46조 (기기제어장치) 기기용도별로 다음 각호의 기기제어장치를 설치하여야 한다.

1. 난방제어기기(다음 각목의 기능을 갖추어야 한다)

- 가. 외기온도 보상기능
- 나. 난방열교환기의 1차측 유량조절에 따른 2차측 공급온도 조절 기능
- 다. 절약모드등 운전프로그램 입력기능
- 2. 급탕제어기기 (다음 각목의 기능을 갖추어야 한다)
 - 가. 급탕열교환기의 1차측 유량조절에 따른 2차측 급탕온도 조절 기능
 - 나. 2차측 급탕온도 임의 설정기능
 - 다. 급탕 과부하시 난방을 일시차단하는 기능
- 3. 냉방제어기기(제1호의 난방제어기기에 준한다)
- 4. 기타 사업자가 따로 정하는 다음 각목의 제어장치
 - 가. 1차측 열매체의 공급·회수측 차압조절장치
 - 나. 1차측 열매체의 감압장치
- 제47조 (순환펌프 및 팽창탱크) ①난방순환펌프는 다음 각호에 의하여 설치하여야 한다.
- 1. 펌프의 유량은 해당설비용량 기준으로 산정하여야 하며, 펌프의 양정· 동력은 여유치를 제외하고 산정하는 것이 바람직하다.
- 난방순환펌프는 연속난방운전을 할 수 있도록 난방제어기기와 연계하여
 자동운전이 되도록 하여야 한다.
- ②팽창탱크는 다음 각호에 의하여 설치하여야 한다.
- 1. 난방배관 계통에는 밀폐식팽창탱크를 설치하여야 하며, 냉수배관 및 급탕 배관 계통에도 밀폐식팽창탱크를 설치하는 것이 바람직하다.
 - 2. 밀폐식팽창탱크를 설치하는 경우에는 배관내 공기를 배출할 수 있는 공기배출기기(Air Separator, Air Eliminator등)를 설치하여야 한다.
- 제48조 (안전을 위한 장치) 열중계처에는 다음 각호의 안전장치가 있어야 한다.
- 1. 열교환설비의 압력이 설계압력이상으로 상승되는 경우 압력을 방출하는

장치. 다만, 사업자가 인정하는 1차측의 경우를 제외한다.

- 2. 순환펌프 전후의 열매체의 압력을 측정하는 장치
- 3. 팽창가압장치가 있는 경우에는 해당 감압장치 전후의 열매체의 압력 또 는 액면을 측정하는 기기 및 제어장치
- 4. 감압장치가 있는 경우에는 해당 감압장치 전후의 열매체의 압력을 측정하는 기기 및 제어장치
- 5. 감온장치가 있는 경우에는 해당 감온장치 전후의 열매체의 온도를 측정하는 기기 및 제어장치
- 6. 열사용시설의 운전상태를 확인할 수 있는 표시장치

제2절 산업단지 집단에너지 열사용시설

제49조 (적용대상 및 범위) 이 기준의 적용을 받는 산업단지집단에너지 열 사용시설 및 그 범위는 다음 각호와 같다.

1. 배관

분기처에서 분기되어 사업자와 사용자의 재산한계점 이후부터 사용처까지의 배관 및 그 부속기기

2. 열계량장치

분기처에서 사용자측의 열매체 사용량을 측정하기 위하여 설치하는 장치

제50조 (배관) ①배관에 관하여는 제13조 내지 제38조의 규정을 적용한다.

- 제51조 (응축수의 활용) 사용자는 공급되는 증기를 사용한 후 발생된 응축수를 회수하기 위한 배관등의 시설을 갖추어야 한다. 다만, 다음 각호의 1에 해당하는 경우에는 그러하지 아니하다.
 - 1. 사업자가 응축수의 회수시설을 갖추지 아니한 경우

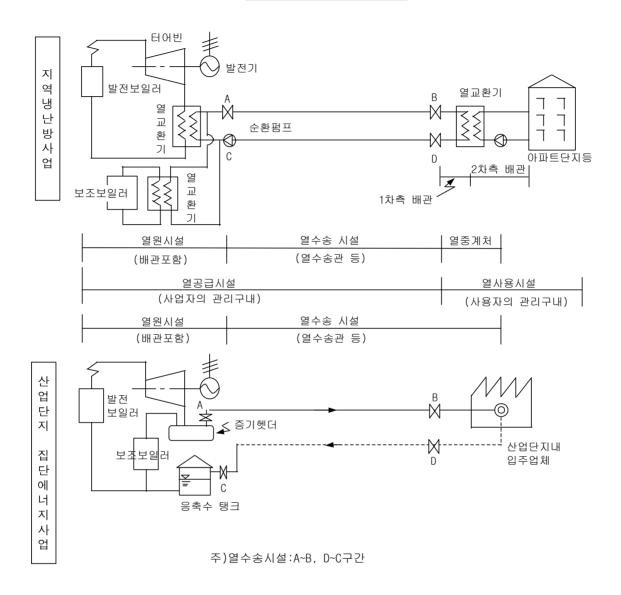
- 2. 열사용시설이 응축수의 회수가 곤란한 구조인 경우
- 3. 사용자가 응축수를 자체활용하는 것으로 사업자의 동의가 있는 경우

제52조 (열계량장치) 열계량장치는 열매체의 열량 또는 온도·압력 및 유량을 용이하게 측정할 수 있는 것이어야 한다.

제4장 행정사항

제53조 (재검토기한) 「훈령・예규 등의 발령 및 관리에 관한 규정」(대통령훈령 제248호)에 따라 이 고시 발령 후의 법령이나 현실여건의 변화 등을 검토하여 이 고시의 폐지, 개정 등의 조치를 하여야 하는 기한은 2012년 07월 31일까지로 한다.

- 부 칙 -


제1조(시행일) 이 고시는 고시한 날부터 시행한다.

제2조 (열사용시설에 관한 경과조치)

- 가. 2001년 4월 21일 이전에 사업계획의 승인 또는 건축허가를 받은 열사용 시설에 대하여는 이 기준을 적용하지 아니한다.
- 나. 이미 사용중인 열사용시설을 지역냉난방방식으로 개체하는 경우에는 이 기준 제43조제2항 및 제47조제2항의 규정을 적용하지 아니한다.
- 제3조(종전 고시의 폐지) 종전의 '집단에너지시설의 기술기준(산업자원부 고시 제2001-45호)'는 이를 폐지한다.

【참 고 도】

집단에너지시설 개념도

